Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 62

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Inspection of radioactive waste packages stored in the Waste Storage Facility L; Planning and trial operation

Kawahara, Takahiro; Suda, Shoya; Fujikura, Toshiki; Masai, Seita; Omori, Kanako; Mori, Masakazu; Kurosawa, Tsuyoshi; Ishihara, Keisuke; Hoshi, Akiko; Yokobori, Tomohiko

JAEA-Technology 2023-020, 36 Pages, 2023/12

JAEA-Technology-2023-020.pdf:2.79MB

We have been storing drums containing radioactive waste (radioactive waste packages) at waste storage facilities. We have been managing radioactive waste packages along traditional safety regulations. However, over 40 years has passed from a part of them were brought in pit-type waste storage facility L. Most of them are carbon steel 200 L drums, and surface of them are corroded. For better safety management, we started to take drums out from the pit and inspect them in FY 2019. After each inspection, we repair them or remove the contents of the drum and refill new drums if necessary. In this report, we will introduce the planning, the review of the plan, and the trial operation of this project.

Journal Articles

Local electronic structure of interstitial hydrogen in MgH$$_2$$ inferred from muon study

Kadono, Ryosuke*; Hiraishi, Masatoshi*; Okabe, Hirotaka*; Koda, Akihiro*; Ito, Takashi

Journal of Physics; Condensed Matter, 35(28), p.285503_1 - 285503_13, 2023/07

 Times Cited Count:0 Percentile:0(Physics, Condensed Matter)

Journal Articles

Toward long-term storage of nuclear materials in MOX fuels fabrication facility

Hirooka, Shun; Nakamichi, Shinya; Matsumoto, Taku; Tsuchimochi, Ryota; Murakami, Tatsutoshi

Frontiers in Nuclear Engineering (Internet), 2, p.1119567_1 - 1119567_7, 2023/03

Storage of plutonium (Pu)-containing materials requires extremely strict attention in terms of physical safety and material accounting. Despite the emphasized importance of storage management, only a few reports are available in the public, e.g., experience in PuO$$_{2}$$ storage in the UK and safety standards in the storage of Pu-containing materials in the US. Japan also stores more U-Pu mixed oxide (MOX) mostly in powder form. Adopting an appropriate storage management is necessary depending on the characteristics of MOX items such as raw powder obtained by reprocessing of spent Light Water Reactor fuels, research and development on the remains of fuel fabrication, which can contain organic materials, and dry-recycled powder during fuel fabrication. Stagnation in fuel fabrications and experience in degradation of MOX containers during extended period of storage have led to the review of the storage method in the Plutonium Fuel Development Center in Japan Atomic Energy Agency. The present work discusses the various nuclear materials, storage methods, experience in degradation of containers that occur during storage, and strategies for future long-term storage.

Journal Articles

Kinetic and Fourier transform infrared studies on the thermal decomposition of sodium hydride

Kawaguchi, Munemichi

Journal of Physical Chemistry C, 125(22), p.11813 - 11819, 2021/06

 Times Cited Count:2 Percentile:14(Chemistry, Physical)

Isothermal and constant heating thermogravimetry-differential thermal analysis (TG-DTA) and Fourier transform infrared spectrometer (FTIR) measurements have been performed for pre- and post-fired sodium hydride (NaH) in the temperature range of 500-700 K, respectively. Temperature dependence of NaH thermal decomposition rates obtained by the isothermal TGs showed an inflection point at around 620 K, which was caused by two kinds of hydrogen states (rapid diffusing and immobile hydrogen). In the FTIR spectra for the NaH and sodium (Na), the specific signals were observed at around 873.4, 1010.4, 1049.5 and 1125.7 cm$$^{-1}$$, and the integrated values of FTIR signals for post-fired NaH at below 550K and at above 698 K were comparable to those for pre-fired NaH and Na, respectively. Those for post-fired NaH at 602-667 K were the intermediate values of the pre-fired NaH and Na, which denoted that the Na-Na bonds haven't grown sufficiently and the hydrogen coexisted in metallic Na. In order to predict the practical kinetics of NaH thermal decomposition reaction, we suggested the simple kinetics model which assumed two kinds of rapidly diffusing and immobile hydrogen states. The simulation results revealed the inflection point in temperature dependence of the thermal decomposition rates accordingly because the transition from immobile hydrogen to rapid diffusing hydrogen crosses over at around 620 K.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station (Translated document)

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-055, 171 Pages, 2020/12

JAEA-Review-2020-055.pdf:5.66MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

Journal Articles

Conceptual design of an abnormality sign determination system for the general control system of the Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Teshigawara, Makoto; Naoe, Takashi; Haga, Katsuhiro; Watanabe, Akihiko*

Journal of Neutron Research, 22(2-3), p.337 - 343, 2020/10

For operating a spallation neutron source and a muon target safely and efficiently, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation and interlock processes of many instruments under various operation status. Since the first beam injection in 2008, it has operated stably without any serious troubles for more than ten years. GCS has a data storage server storing operational data on status around target stations. It has functioned well to detect and investigate unusual situations by checking data in this server. For continuing stable operation of MLF in future, however, introduction of abnormality sign determination system (ASDS) will be necessary for picking up potential abnormalities of target stations caused by radiation damages, time-related deterioration and so on. It will judge abnormalities from slight state transitions of target stations based on analysis with various operational data throughout proton beams, target stations, and secondary beams during long-term operations. This report mentions present status of GCS, conceptual design of ASDS, and installation of an integral data storage server which can deal with various data for ASDS integrally.

JAEA Reports

Basis for handling of nuclear fuel materials (Second edition)

Task Force on Writing Textbook of Nuclear Fuel Materials

JAEA-Review 2020-007, 165 Pages, 2020/07

JAEA-Review-2020-007.pdf:6.63MB

The present textbook was written by Task Force on Writing Textbook of Nuclear Fuel Materials at the Nuclear Science Research Institute in order to improve technological abilities of engineers and researchers who handle nuclear fuel materials. The taskforce consists of young and middle class engineers each having certification for chief engineer of nuclear fuel. The present textbook mainly deals with uranium and plutonium, and shows their nuclear properties, physical and chemical properties, and radiation effects on materials and human body. It also presents basic matters for safety handling of nuclear fuel materials, such as handling of nuclear fuel materials with hood and glovebox, important points in storage and transportation of nuclear fuel materials, radioactive waste management, radiation safety management, and emergency management. Furthermore, incident cases at domestic and foreign nuclear fuel materials facilities are compiled to learn from the past.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-004, 140 Pages, 2020/05

JAEA-Review-2020-004.pdf:4.22MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

JAEA Reports

Technical design of the pressure-resistant chamber for open inspections of the storage containers of nuclear fuel materials

Marufuji, Takato; Sato, Takumi; Ito, Hideaki; Suzuki, Hisashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2019-006, 22 Pages, 2019/05

JAEA-Technology-2019-006.pdf:2.84MB

Radioactive contamination incident occurred at Plutonium Fuel Research Facility (PFRF) in Oarai Research and Development Institute, Japan Atomic Energy Agency on June 6, 2017. During inspection work of storage container containing nuclear fuel materials, the PVC bag packaging in the storage container ruptured when a worker opened the lid in the hood, and a part of contents was spattered over the room. The cause of the increase of internal pressure of the storage container was gas generation by alpha radiolysis of the epoxy resin mixed with nuclear fuel materials. Opening inspection of about 70 similar containers stored in PFRF has been planned to confirm the condition of the contents and to stabilize the stored materials containing organic compounds. For safe and reliable open inspection of the storage containers with high internal pressure in the glove box, it is necessary to develop a pressure-resistant chamber in which the storage containers are opened and the contents are inspected under gastight condition. This report summarizes the concerns and countermeasures of the chamber design and the design results of the chamber.

JAEA Reports

Restoration activity of the contamination accident at plutonium fuel research facility

Restoration Activity Team for the PFRF Contamination Incident

JAEA-Review 2019-001, 58 Pages, 2019/03

JAEA-Review-2019-001.pdf:10.74MB

The contamination accident occurred in a laboratory room (Room No.108) of Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA), Oarai Research and Development Institute on June 6, 2017. The polyvinyl chloride (PVC) bags burst just after the lid of one storage container was opened during the inspection of storage containers for U and Pu in the ventilation hood. At that time, part of nuclear materials in the storage container were scattered all over the room. Five workers in the room were subjected to plutonium contamination, which resulted in internal exposure. In order to restore the Room No.108 of PFRF, the Restoration Activity Team organized in JAEA carried out the decontamination work after the investigation of the contamination level in the room. The team decontaminated the surface of walls, ceiling, gloveboxes and other experimental instruments. Depending on the contamination distribution and installation state of the instruments, suitable decontamination methods were selected. In addition to the manual wiping using wet clothes, the exfoliation method using a strippable paint was applied for constricted areas. As a result, the loose alpha-contamination level fell below the detection limit throughout the room. On the other hand, the fixed contamination was covered with plastic sheets after the decontamination by a strippable paint. We hope that the restoration activity described in this report will provide useful information for the management of decommissioning facilities, especially for facilities treating alpha-radioactive materials such as plutonium.

Journal Articles

Level 1 PRA for external vessel storage tank of Japan sodium-cooled fast reactor in whole core refueling

Yamano, Hidemasa; Kurisaka, Kenichi; Nishino, Hiroyuki; Okano, Yasushi; Naruto, Kenichi*

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 15 Pages, 2018/10

Spent fuels are transferred from a reactor core to a spent fuel pool through an external vessel storage tank (EVST) filled with sodium in sodium-cooled fast reactors in Japan. This paper describes identification of dominant accident sequences leading to fuel failure, which was achieved through probabilistic risk assessment for the EVST designed for a next sodium-cooled fast reactor plant system in Japan to improve the EVST design. The safety strategy for the EVST involves whole core refueling (early transfer of all core fuel assemblies into the EVST) assuming a severe situation that results in sodium level reduction leading finally to the top of the reactor core fuel assemblies in a long time. This study introduces the success criteria mitigation along the decay heat decrease over time. Based on the design information, this study has carried out identification of initiating events, event and fault tree analyses, a probability analysis for human error, and quantification of accident sequences. The fuel damage frequency of the EVST was evaluated to be approx. 10$$^{-5}$$/year. The dominant accident sequence resulted from the static failure and human error for the switching from the stand-by to operation mode in the three stand-by cooling circuits after loss of one circuit for refueling heat removal operation as an initiating phase.

Journal Articles

Level 1 PRA for external vessel storage tank of Japan sodium-cooled fast reactor in scheduled refueling

Yamano, Hidemasa; Naruto, Kenichi*; Kurisaka, Kenichi; Nishino, Hiroyuki; Okano, Yasushi

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07

Spent fuels are transferred from a reactor core to a spent fuel pool through an external vessel storage tank (EVST) filled with sodium in sodium-cooled fast reactors in Japan. This paper describes identification of dominant accident sequences leading to fuel failure by conducting probabilistic risk assessment for EVST designed for a next sodium-cooled fast reactor plant system in Japan to improve the EVST design. Based on the design information, this study has carried out identification of initiating events, event and fault tree analyses, human error probability analysis, and quantification of accident sequences. Fuel damage frequency of the EVST was evaluated approx. 10$$^{-6}$$ /year in this paper. By considering the secondary sodium freezing, the fuel damage frequency was twice increased. The dominant accident sequence resulted from the common cause failure of the damper opening and/or the human error for the switching from the stand-by to the operation mode in the three stand-by cooling circuits. The importance analyses have indicated high risk contributions.

JAEA Reports

Proceedings of the Research Conference on Cementitious Composites in Decommissioning and Waste Management (RCWM2017); June 20th and 21st, 2017, Tomioka Town Art&Media Center, Tomioka, Futaba, Fukushima, Japan

Sano, Yuichi; Ashida, Takashi

JAEA-Review 2017-021, 180 Pages, 2017/11

JAEA-Review-2017-021.pdf:86.98MB

Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Cementitious Composites in Decommissioning and Waste Management (RCWM2017) on 20th and 21st June, 2017. This report compiles the abstracts and the presentation materials in the above conference.

Journal Articles

Level 1 PRA for external vessel storage tank of Japan sodium-cooled fast reactor in scheduled refueling

Yamano, Hidemasa; Naruto, Kenichi*; Kurisaka, Kenichi; Nishino, Hiroyuki; Okano, Yasushi

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 3 Pages, 2017/11

Spent fuels are transferred from a reactor core to a spent fuel pool through an external vessel storage tank (EVST) filled with sodium in sodium-cooled fast reactors in Japan (JSFR). The objective of this study is to identify dominant accident sequences leading to fuel failure by conducting PRA for EVST. The EVST heat removal system in JSFR consists of four independent loops with for primary and secondary ones. Based on the JSFR design information, this study has identified initiating events, event and /fault tree analyses, human reliability analysis, and quantification of accident sequences. Fuel damage frequency of the EVST was evaluated approx. 10$$^{-6}$$ /year in this paper. The main contributor of the fuel damage frequency is the loss of heat removal function of the cooling system. The dominant initiating event was the loss of one circuit of normal heat removal operation.

JAEA Reports

Proceedings of the Research Conference on Post-accident Waste Management Safety (RCWM2016) and the Technical Seminar on Safety Research for Radioactive Waste Storage; November 7th and 8th 2016, LATOV, Iwaki, Fukushima, Japan

Motooka, Takafumi; Yamagishi, Isao

JAEA-Review 2017-004, 157 Pages, 2017/03

JAEA-Review-2017-004.pdf:48.18MB

Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Post-accident Waste Management Safety (RCWM2016) was held on November 7th, 2016 and the Technical Seminar on Safety Research for Radioactive Waste Storage was held on November 8th, 2016. This report compiles the abstracts and the presentation materials in the above conference and seminar.

Journal Articles

Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

Abe, Hiroshi; Tokuhira, Shinnosuke*; Uchida, Hirohisa*; Oshima, Takeshi

Nuclear Instruments and Methods in Physics Research B, 365(Part A), p.214 - 217, 2015/12

no abstracts in English

Journal Articles

In-situ dismantling of the liquid waste storage tank in the decommissioning program of the JRTF

Mimura, Ryuji; Muraguchi, Yoshinori; Nakashio, Nobuyuki; Nemoto, Koichi; Shiraishi, Kunio

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

The JAERI's Reprocessing Test Facility (JRTF) was the first engineering-scale reprocessing facility constructed in Japan. The JRTF was operated from 1968 to 1969 to reprocess spent fuels from the Japan Research Reactor No.3 (JRR-3). As a result of the operation (total 3 runs) by PUREX process, 200 g of highly purified plutonium (Pu) were extracted. In this operation, about 70 m$$^{3}$$ of liquid waste was generated and part of this waste, which including Pu, with relatively high radioactivity, was stored in six large tanks. After shutdown of the facility, the JRTF decommissioning program was started in 1990 to develop decommissioning technologies and to obtain experiences and data on dismantling of fuel cycle facilities. Liquid waste in the tanks was treated from 1982 to 1998. Dismantling of tanks started in 2002. The tanks were installed in narrow concrete cells and inside of the cell was high dose area. Dismantling method for the tank is important factor to decide manpower and time for dismantlement. In this paper, in-situ dismantling of the liquid waste storage tank and its preparation work are discussed.

Journal Articles

Experiences on research reactors decommissioning in the NSRI of the JAEA

Tachibana, Mitsuo; Kishimoto, Katsumi; Shiraishi, Kunio

International Nuclear Safety Journal (Internet), 3(4), p.16 - 24, 2014/11

Three research reactors were permanently shut down in the Nuclear Science Research Institute (NSRI) of the Japan Atomic Energy Agency (JAEA) as of October 2014. Safe storage or one-piece removal method was applied to decommissioning of these research reactors depending on decommissioning cost and utilization of facilities and so on. Various kinds of data and experiences were obtained through decommissioning of these research reactors. This report shows data and experiences on the research reactors decommissioning in the NSRI of the JAEA.

Journal Articles

RBPO$$_{5}$$(R=Ca, Sr)-based storage phosphors for neutron detection

Sakasai, Kaoru; Katagiri, Masaki; Matsubayashi, Masahito; Nakamura, Tatsuya; Kondo, Yasuhiro*

IEEE Transactions on Nuclear Science, 52(5), p.1856 - 1859, 2005/10

 Times Cited Count:9 Percentile:53.19(Engineering, Electrical & Electronic)

Storage characteristics of RBPO$$_{5}$$(R=Ca, Sr) based phosphors have been investigated for neutron detection. To increase the photostimulated luminescence (PSL) yields of CaBPO$$_{5}$$:Ce$$^{3+}$$ and SrBPO$$_{5}$$:Ce$$^{3+}$$ phosphors, fluorine atoms were introduced and the molar ratio of the fluorine atoms was optimized for the PSL yields. In addition, the authors found that the PSL yields of SrBPO$$_{5}$$:Eu$$^{2+}$$ phosphors were significantly increased by adding Li$$_{2}$$B$$_{4}$$O$$_{7}$$, though introducing fluorine and brome atoms in the phosphor was not effective for the PSL yields. These phosphors will be usable as new neutron storage phosphors with low $$gamma$$-ray sensitivity because they consist of light materials.

Journal Articles

System of the advanced volume reduction facilities for LLW at JAERI

Higuchi, Hidekazu; Momma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The JAERI constructed the Advanced Volume Reduction Facilities(AVRF). The AVRF consists of the Waste Size Reduction and Storage Facilities(WSRSF) and the Waste Volume Reduction Facilities(WVRF). By operating the AVRF, it will be able to produce waste packages for final disposal and to reduce the amount of the low level solid wastes. Cutting installations for large wastes such as tanks in the WSRSF have been operating since June 1999. The wastes treated so far amount to 600 m$$^{3}$$ and the volume reduction ratio is around 1/3. The waste volume reduction is carried out by a high-compaction process or melting processes in the WVRF. The metal wastes from research reactors are treated by the high-compaction process. The other wastes are treated by the melting processes that enable to estimate radioactivity levels easily by homogenization and get chemical and physical stability. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005.

62 (Records 1-20 displayed on this page)